SIMPLE, STEREOCONTROLLED SYNTHESIS OF THROMBOXANE B $_2$ FROM D-GLUCOSE

E. J. Corey, Masakatsu Shibasaki and Jochen Knolle

Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138, USA

(Received in USA 21 February 1977; received in UK for publication 28 March 1977)

Several syntheses of thromboxane B_2^{-1} (1) via prostanoid precursors 2 or directly 3 have been devised. We now describe a new and very practical direct route to 1 starting from the inexpensive, optically active precursor α -methyl-D-glucoside (2). This note has been written and submitted for publication following recent reports 4 , 5 of a different synthesis of thromboxane B_2 from the sugar derivative O-benzylidene-2-deoxy- α -D-ribo-hexopyranoside.

Our synthesis commences using the known and efficient sequence for the conversion of 2 to the 4,5-unsaturated sugar 5 ($[\alpha]^{23}_{D}$ + 67.3° in CHCl₃) via intermediates 3 and 4. The allylic alcohol 5 was transformed stereospecifically into the dimethylamide 6 by Claisen rearrangement. Specifically, 5 was heated with several equivalents of the dimethylaminal of N, N-dimethylacetamide in diglyme (gradually from 25° to 160° over 2 hrs and then at 160° for 2 hrs) and the product was isolated by the following operations:

(a) vacuum concentration, (b) treatment with methanol containing 1 equiv of potassium carbonate (to cleave any acetate ester), (c) removal of methanol, (d) extraction from salt solution at pH5-6 by means of methylene chloride and (e) column chromatography on silica gel. Pure $6^{10, 11}$ was readily obtained in 75% yield as an ofl, $[\alpha]^{23}_{D}$ + 84.11° (in CCl₄), infrared max 1640cm⁻¹ (film).

Treatment of 6 with 3 equiv of iodine in tetrahydrofuran-water (1:1) at 0° for 1 hr afforded in ca. 80% yield the oily iodo lactone 7, infrared max 1780cm⁻¹ (CHCl₃), $[\alpha]_{\underline{D}}^{23} + 26.3^{\circ}$ (in CHCl₃). Deiodination of 7 with tributyltin hydride ¹³ afforded quantitatively the hydroxy lactone 8, mp 101-101.5°, infrared max (CHCl₃)1780cm⁻¹, $[\alpha]_{\underline{D}}^{23} + 86.6^{\circ}$ (in CHCl₃), \underline{R}_{f} 0.22 on silica gel with ether-methanol (95:5). The lactone 8 obtained in this way was identical in all respects with a compound of the same structure prepared previously by a different route. ^{2a}, ^{2b}, ¹⁴, ¹⁵ The lactone 8 is converted by standard methodology ^{13a} as has already been demonstrated, ^{2a}, ^{2b} to thromboxane B₂ and the 15-epimer. Since we have already described ³ an efficient method for the conversion of the latter to the former (superoxide displacement of mesylate ¹⁶, ¹⁷), the synthesis outlined here qualifies as completely stereocontrolled, as well as simple and effective. ¹⁸

References and Notes

- M. Hamberg, J. Svensson and B. Samuelsson, <u>Prog. Nat. Acad. Soi.</u>, <u>72</u>, 2994 (1975). See also, <u>Science</u>, <u>190</u>, 770 (1975).
- (a) N.A. Nelson and R. W. Jackson, <u>Tetrahedron Lett.</u>, 3275 (1976); (b) R. C. Kelly, I. Schletter and
 S. J. Stein, <u>ibid.</u>, 3279 (1976); (c) W. P. Schneider and R. A. Morge, <u>ibid.</u>, 3283 (1976).
- 3. E. J. Corey, M. Shibasaki, J. Knolle, and T. Sugahara, Tetrahedron Lett., in press.
- 4. Chem. and Eng. News, 20 (1977).
- 5. S. Hanessian and P. Lavallee, Can. J. Chem., 55, 562 (1977), (as cited in ref. 4).
- 6. N. L. Holder and B. Fraser-Reid, Can. J. Chem., 51, 3357 (1973).
- A. E. Wick, D. Felix, K. Steen and A. Eschenmoser, Helv. Chim. Acta, 47, 2425 (1964) and 52, 1030 (1969).
- 8. Only low yields of Claisen rearrangement product were obtained using the ortho ester precursor method of W. S. Johnson, L. Werthemann, W. R. Bartlett, T. J. Brockson, T-t. Li, D. J. Faulkner and M. R. Petersen, J. Am. Chem. Soc., 92, 741 (1970).
- 9. The carboxylic acid corresponding to the dimethylamide 6 was readily obtained by the trimethylsilyl enol ether Claisen method starting from the diacetate of 5; see, R. E. Ireland and A. K. Willard, Tetrahedron Lett., 3975 (1975).
- Satisfactory infrared, proton magnetic resonance (pmr) and mass spectral data were obtained for each synthetic intermediate.
- 11. The pmr spectrum of 6 (in CDCl₃) contained the following peaks (s): 5.6-5.0 (m, 2H, olefinic), 4.85 (broad s, 1H, acetal), 4-3.4 (broad m, 4H, HC-CH₂OH), 3.38 (s, 3H, OCH₃), 2.95 (d, 7H, C₄-H and N(CH₃)₂), and 2.0-2.66 (m, 2H, CH₂CON). The R value found for 6 on silica gel thin layer plate using ether-methanol (95.5) was 0.12 as compared to 0.40 for the corresponding acetate and 0.44 for 5 in the same system.
- 12. The pmr spectrum of 7 in CDCl₂ showed the following peaks (\$\mathscr{J}\$): 5.07 (d, 1H, J = 2Hz, CHOMe), 4.82 (d x d, J = 5Hz, CHOC = O), 4.40-4.20 (m, 1H, CHCH₂OH), 3.34 (s, 3H, OCH₂), 3.90-3.14 (m, 3H, CH₂OH and CHI), and 3.14-2.06 (m, 4H, OH and CH₂COO). The R_f for 7 on silica gel with ethermethanol (95:5) was 0.39.
- (a) E. J. Corey, T. K. Schaaf, W. Huber, U. Koelliker, and N. M. Weinshenker, J. Am. Chem. Soc.,
 92, 397 (1970); (b) E. J. Corey and J. W. Suggs, J. Org. Chem., 40, 2554 (1975).
- 14. We are grateful to Dr. R. B. Kelly of the Upjohn Co. for spectra and a sample of 8.
- 15. The pmr spectrum of 8 showed the following peaks (CDCl₃): 5.00-4.40 (m, 2H, CHOCH₃ and CHOCO), 3.31 (s, 3H, OCH₃), 4.00-3.40 (m, 3H, OCHCH₂OH), and 3.90-1.60 (m, 6H, CHCH₂COO, HO and CH₂CHOCH₃).
- 16. E. J. Corey, M. Shibasaki, and K. C. Nicolaou, Chem. Comm., 658 (1975).
- 17. E. J. Corey, K. C. Nicolaou, M. Shibasaki, Y. Machida, and C. S. Shiner, ibid., 3183 (1975).
- 18. This research was assisted financially by a grant from the National Science Foundation and a stipend to J. K. from the Deutsche Forschungsgemeinschaft.